IteratedHardy-type inequalities involving suprema
نویسنده
چکیده
In this paper the complete solution of the restricted inequalities for supremal operators are given. The boundedness of the composition of supremal operators with the Hardy and Copson operators in weighted Lebesgue spaces are characterized.
منابع مشابه
Ratio Limit Theorems for Empirical Processes
Concentration inequalities are used to derive some new inequalities for ratio-type suprema of empirical processes. These general inequalities are used to prove several new limit theorems for ratio-type suprema and to recover a number of the results from [1] and [2]. As a statistical application, an oracle inequality for nonparametric regression is obtained via ratio bounds.
متن کاملWeighted iteratedHardy-type inequalities
In this paper a reduction and equivalence theorems for the boundedness of the composition of a quasilinear operator T with the Hardy and Copson operators in weighted Lebesgue spaces are proved. New equivalence theorems are obtained for the operator T to be bounded in weighted Lebesgue spaces restricted to the cones of monotone functions, which allow to change the cone of non-decreasing function...
متن کاملCompensator and exponential inequalities for some suprema of counting processes
Talagrand [1996. New concentration inequalities in product spaces. Invent. Math. 126 (3), 505–563], Ledoux [1996. On Talagrand deviation inequalities for product measures. ESAIM: Probab. Statist. 1, 63–87], Massart [2000a. About the constants in Talagrand’s concentration inequalities for empirical processes. Ann. Probab. 2 (28), 863–884], Rio [2002. Une inégalité de Bennett pour les maxima de p...
متن کاملMoment Inequalities for Functions of Independent Random Variables by Stéphane Boucheron,1 Olivier Bousquet,
A general method for obtaining moment inequalities for functions of independent random variables is presented. It is a generalization of the entropy method which has been used to derive concentration inequalities for such functions [Boucheron, Lugosi and Massart Ann. Probab. 31 (2003) 1583–1614], and is based on a generalized tensorization inequality due to Latała and Oleszkiewicz [Lecture Note...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کامل